3.25.52 \(\int \frac {1}{\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}} x} \, dx\)

Optimal. Leaf size=54 \[ \frac {2 \tanh ^{-1}\left (\frac {2 a+b \sqrt {\frac {d}{x}}}{2 \sqrt {a} \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}\right )}{\sqrt {a}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {1970, 1357, 724, 206} \begin {gather*} \frac {2 \tanh ^{-1}\left (\frac {2 a+b \sqrt {\frac {d}{x}}}{2 \sqrt {a} \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}\right )}{\sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b*Sqrt[d/x] + c/x]*x),x]

[Out]

(2*ArcTanh[(2*a + b*Sqrt[d/x])/(2*Sqrt[a]*Sqrt[a + b*Sqrt[d/x] + c/x])])/Sqrt[a]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1357

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[
b^2 - 4*a*c, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1970

Int[(x_)^(m_.)*((a_) + (b_.)*((d_.)/(x_))^(n_) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> -Dist[d^(m + 1), Subst
[Int[(a + b*x^n + (c*x^(2*n))/d^(2*n))^p/x^(m + 2), x], x, d/x], x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[n2,
 -2*n] && IntegerQ[2*n] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}} x} \, dx &=-\operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b \sqrt {x}+\frac {c x}{d}}} \, dx,x,\frac {d}{x}\right )\\ &=-\left (2 \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+\frac {c x^2}{d}}} \, dx,x,\sqrt {\frac {d}{x}}\right )\right )\\ &=4 \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b \sqrt {\frac {d}{x}}}{\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}\right )\\ &=\frac {2 \tanh ^{-1}\left (\frac {2 a+b \sqrt {\frac {d}{x}}}{2 \sqrt {a} \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}\right )}{\sqrt {a}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.39, size = 54, normalized size = 1.00 \begin {gather*} \frac {2 \tanh ^{-1}\left (\frac {2 a+b \sqrt {\frac {d}{x}}}{2 \sqrt {a} \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}\right )}{\sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + b*Sqrt[d/x] + c/x]*x),x]

[Out]

(2*ArcTanh[(2*a + b*Sqrt[d/x])/(2*Sqrt[a]*Sqrt[a + b*Sqrt[d/x] + c/x])])/Sqrt[a]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.34, size = 62, normalized size = 1.15 \begin {gather*} \frac {4 \tanh ^{-1}\left (\frac {\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{\sqrt {a}}-\frac {\sqrt {\frac {c}{d}} \sqrt {\frac {d}{x}}}{\sqrt {a}}\right )}{\sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(Sqrt[a + b*Sqrt[d/x] + c/x]*x),x]

[Out]

(4*ArcTanh[Sqrt[a + b*Sqrt[d/x] + c/x]/Sqrt[a] - (Sqrt[c/d]*Sqrt[d/x])/Sqrt[a]])/Sqrt[a]

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(a+c/x+b*(d/x)^(1/2))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(a+c/x+b*(d/x)^(1/2))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const ge
n & e,const index_m & i,const vecteur & l) Error: Bad Argument ValueWarning, integration of abs or sign assume
s constant sign by intervals (correct if the argument is real):Check [abs(t_nostep)]Warning, integration of ab
s or sign assumes constant sign by intervals (correct if the argument is real):Check [abs(t_nostep)]Evaluation
 time: 0.42Done

________________________________________________________________________________________

maple [B]  time = 0.14, size = 94, normalized size = 1.74 \begin {gather*} \frac {2 \sqrt {\frac {a x +\sqrt {\frac {d}{x}}\, b x +c}{x}}\, \sqrt {x}\, \ln \left (\frac {2 a \sqrt {x}+\sqrt {\frac {d}{x}}\, b \sqrt {x}+2 \sqrt {a x +\sqrt {\frac {d}{x}}\, b x +c}\, \sqrt {a}}{2 \sqrt {a}}\right )}{\sqrt {a x +\sqrt {\frac {d}{x}}\, b x +c}\, \sqrt {a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(a+(d/x)^(1/2)*b+c/x)^(1/2),x)

[Out]

2*((a*x+(d/x)^(1/2)*b*x+c)/x)^(1/2)*x^(1/2)/(a*x+(d/x)^(1/2)*b*x+c)^(1/2)*ln(1/2*(2*a*x^(1/2)+(d/x)^(1/2)*b*x^
(1/2)+2*(a*x+(d/x)^(1/2)*b*x+c)^(1/2)*a^(1/2))/a^(1/2))/a^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {b \sqrt {\frac {d}{x}} + a + \frac {c}{x}} x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(a+c/x+b*(d/x)^(1/2))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*sqrt(d/x) + a + c/x)*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {1}{x\,\sqrt {a+\frac {c}{x}+b\,\sqrt {\frac {d}{x}}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(a + c/x + b*(d/x)^(1/2))^(1/2)),x)

[Out]

int(1/(x*(a + c/x + b*(d/x)^(1/2))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x \sqrt {a + b \sqrt {\frac {d}{x}} + \frac {c}{x}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(a+c/x+b*(d/x)**(1/2))**(1/2),x)

[Out]

Integral(1/(x*sqrt(a + b*sqrt(d/x) + c/x)), x)

________________________________________________________________________________________